Visual-auditory interactions modulate saccade-related activity in monkey superior colliculus.

نویسندگان

  • M A Frens
  • A J Van Opstal
چکیده

This paper reports on single-unit activity of saccade-related burst neurons (SRBNs) in the intermediate and deep layers of the monkey superior colliculus (SC), evoked by bimodal sensory stimulation. Monkeys were trained to generate saccadic eye movements towards visual stimuli, in either a unimodal visual saccade task, or in a bimodal visual-auditory task. In the latter task, the monkeys were required to make an accurate saccade towards a visual target, while ignoring an auditory stimulus. The presentation of an auditory stimulus in temporal and spatial proximity of the visual target influenced neither the accuracy nor the kinematic properties of the evoked saccades. However, it had a significant effect on the activity of 90% (45/50) of the SRBNs. The motor-related burst increased significantly in some neurons, but was suppressed in others. In visual-movement cells, comparable bimodal interactions were observed in both the visually evoked burst and the movement-related burst. The large differences observed in the movement-related activity of SRBNs for identical saccades under different sensory conditions do not support the hypothesis that such cells encode dynamic motor error. The only behavioral parameter that was affected by the presentation of the auditory stimulus was saccade latency. Auditory stimulation caused saccade latency changes in the majority of the experiments. Meanwhile, the timing of peak collicular motor activity and saccade onset remained tightly coupled for all stimulus configurations. In addition, saccade latency varied as function of the distance between the stimuli in 36% of the recordings. Interestingly, the occurrence of a spatial latency effect covaried significantly with a similar spatial influence on the SRBNs firing rate. These cells were always most active in the bimodal task when both stimuli were in spatial register, but activity decreased with increasing stimulus separation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saccade-related activity of periaqueductal gray matter of the monkey.

Single unit activity was recorded extracellularly from the periaqueductal gray matter (PAG) and the superior colliculus of three monkeys during spontaneous saccades and fixation. Most saccade-related cells were found in the dorsal and lateral regions of the PAG and they paused with saccades. The pause preceded the onset of saccades by 34.5 +/- 6.8 msec (n = 31). In 90% of the 31 PAG cells, the ...

متن کامل

Crossmodal integration in the primate superior colliculus underlying the preparation and initiation of saccadic eye movements.

Saccades to combined audiovisual stimuli often have reduced saccadic reaction times (SRTs) compared with those to unimodal stimuli. Neurons in the intermediate/deep layers of the superior colliculus (dSC) are capable of integrating converging sensory inputs to influence the time to saccade initiation. To identify how neural processing in the dSC contributes to reducing SRTs to audiovisual stimu...

متن کامل

Monkey posterior parietal cortex neurons antidromically activated from superior colliculus.

The connection between the posterior parietal cortex (PPC) and the superior colliculus (SC) was investigated by antidromically activating neurons within the lateral intraparietal (LIP) area with single-pulse stimulation delivered to the intermediate layers of the SC. To dissociate visual and saccade-related responses, the discharge properties of the identified efferent neurons were studied in t...

متن کامل

Controlled movement processing: superior colliculus activity associated with countermanded saccades.

We investigated whether the monkey superior colliculus (SC), an important midbrain structure for the regulation of saccadic eye movements, contains neurons with activity patterns sufficient to control both the cancellation and the production of saccades. We used a countermanding task to manipulate the probability that, after the presentation of a stop signal, the monkeys canceled a saccade that...

متن کامل

Visual- and saccade-related signals in the primate inferior colliculus.

The inferior colliculus (IC) is normally thought of as a predominantly auditory structure because of its early position in the ascending auditory pathway just before the auditory thalamus. Here, we show that a majority of IC neurons (64% of 180 neurons) in awake monkeys carry visual- and/or saccade-related signals in addition to their auditory responses (P < 0.05). The response patterns involve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research bulletin

دوره 46 3  شماره 

صفحات  -

تاریخ انتشار 1998